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2D Graphics Pipeline

Clipping

. window to
Applying -
world window viewport
mapping

HE
" [ Rasterzation




Rasterization

® Afundamental computer graphics function
® Determine the pixels’ colors, illuminations, textures, etc.
® Implemented by graphics hardware

® Rasterization algorithms
® Lines
® Circles
® Triangles

® Polygons

Mr. S. D. Patil, Automobile Department, Government College of Engineering and Research Avasari



Many computer-generated pictures are composed of
straight-line segments.

A line segment is displayed by turning on a set of
adjacent pixels.

In order to draw a line, it is necessary to determine
which pixels lie nearest the line and provide the best
approximation to the desired line.

The line drawing routine should be accurate, fast,
and easy to implement.




y=mx+b
where, m = Slope of the line

b =the y intercept of a line

A line segment is defined by the
coordinate
endpoints.

positions of the line

We have a line with the endpoints (2,2)
and (8,7) and we want to draw this line
on a pixel based display.

How do we choose which pixels to turn o

Following algorithms are used for line
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* Digital Differential Analyzer (simple DDA) Line Drawing Algorithm

Bresenham ‘s Line Drawing Algorithm



To illustrate the idea of DDA algorithm, we still want to
draw the line segment with endpoints
(Xstart, Ystart) and (Xend, Yend) having slope :

_ Yend — Ystart
~ Xend — Xstart

Any two consecutive points (x1, y1), (x2, y2) lying
on this line satisfies the equation:

m

y2-yl
x2 —Xx1

= m



The algorithm is divided into two cases that depend on the
absolute value of the slope of the line. Note that:

= We should test the line endpoints to ensure that the line is
neither horizontal (Xstart = Xend) nor vertical (Ystart
=Yend). If the line is horizontal use the horizontal line
drawing algorithm and use the vertical line drawing algorithm
when it is vertical.

= The starting and ending points of the line are plotted
separately since these values are known from the given data.

= [In the two cases below the computed incremental values
for y2 and x2 may not be integers. The Round function must
be used to obtain an integer coordinate value.

10



Case 1: For abs(m) < 1 and Xstart < Xend,

we generate the line by incrementing the previous x
value one unit until Xend is reached and then solve
for y. if Xstart > Xend, swap the two endpoints.
Thus for these consecutive points:

Xx2=x1+1 or x2—-x1=1
Substituting this difference into equation 1 yields:

(y2—-vyl1l)/1=mor y2=yl + m

11



Equation 2 enables us to calculate successive values
of y from the previous value by replacing the
repeated multiplication with floating point addition.

This method of obtaining the current value by
adding a constant to the previous value is an
example of incremental calculation. Using
knowledge of one point to compute the next is a
great time saving technique.

The following code can be used to draw a line from
(Xstart, Ystart) to (Xend, Yend) using simple DDA
algorithm (case 1):

12



m = (Yend-Ystart) / (Xend-Xstart)
If (abs(m)<1 and Xstart>Xend) then
Swap endpoints Xstart <> Xend and Ystart <» Yend
end if
Set pixel (Xstart, Ystart) with desired color
If abs(m) < 1 then
y = Ystart
X = Xstart + 1
Next: y=y+m
Set pixel (X, Round(y)) with desired color
X=X+1

If x < Xend-1 then go to Next

endif
Set pixel (Xend, Yend) with desired color

13



We will use the simple DDA algorithm to draw a line with starting point (2,0)
and ending point (7,4) on a pixel based display. Firstly, we compute the slope m:

m =(Yend-Ystart)/(Xend—Xstart)=(4-0)/(7-2)=4/5 = 0.8
Ax = (Xend—Xstart)=(7-2)=5

Ay =(Yend—-Ystart) =(4-0) =4

Increment in X = Xstart +(Ax/5) = Xstart + 1
Increment in Y= Ystart + (Ay/5) = Ystart + 0.8

y Round(y)
0
y=y+m=0 + 0.8=0.8
y=y+m=0.8+ 0.8=1.6
y=y+m=1.6+0.8=2.4
y=y+m=24+ 0.8=3.2
4
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Geometrical Curve :

 All existing CAD/CAM system provide users with curve entities
which can be divided into analytical and synthetic curve

Analytical curve:

I. can be defined by mathematical equation

ll. Analytic entities are points, lines, arcs circle etc

Synthetic curve

I. Itis defined by set of data points

Il. Synthetics curve include B- spline curve, Bezier curve etc

Mr. S. D. Patil, Automobile Department, Government College of Engineering and Research Avasari
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Methods of defining Point

Absolute Cartesian coordinate
Absolute cylindrical coordinate
Incremental Cartesian Coordinate
Incremental Cylindrical Coordinate
Point of Intersection

Defining middle or break point

Methods of defining Line

Define end points
Parallel or Perpendicular to exiting line
Vertical or horizontal line

Tangent to exiting line

Mr. S. D. Patil, Automobile Department, Government College of Engineering and Research Avasari
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Methods of defining Circle

Radius or diameter and center
Defining three points
Center and point on circle

Tangent to line, pass through a given point and with radius

Methods of defining Ellipse

Center and axis length
Four Points

Two conjugate diameter
Methods of defining Parabola

Vertex and focus

Three points

Mr. S. D. Patil, Automobile Department, Government College of Engineering and Research Avasari
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(1) Analytic Curves :

- The curves which are defined by the
analytic equations are known as analytic
curves.

ol = o N
* Lines e
- Circles
- Ellipse of e TN,
- Parabolas S

- Hyperbolas

Mr. S. D. Patil, Automobile Department, Government College of Engineering and Research Avasari

19



(2) Synthetic Curves::

* The curves which defined by the set of data
points are known as..

* The synthetic curves needed when a curve is
represented by a collection of data points.

* The synthetic curves are represented by
polynomials.

Mr. S. D. Patil, Automobile Department, Government College of Engineering and Research Avasari
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Ex. Of synthetic curves :

P
8
Py
Prj/\)
k=3

L
J

Bezier Curves
* Cubic spline, B-Spline, Beta-Spline, Nu-Spline

Mr. S. D. Patil, Automobile Department, Government College of Engineering and Research Avasari

21



Application of Synthetic Curves

- The synthetic curves are used for
representing profile of :

- Car bodies

- Ship bulls

- Airplane wings
- Propeller blade
\ - Shoe insoles

- Bottles
“ Mr. S. D. Patil, Automobile Department, Government College of Engineering and Research Avasari



Curve Representation

Cartesian or Non parametric
® P=[xyz]"= [x f(x) g(x)1'
® Curve represented by x, y and z coordinate or one to one relationship

® If the solve of curve is vertical or near to vertical it's value become infinite or very

large so, it is difficult to deal with computationally and programme wise
difficult to represent closed curve

If curve displayed by as a series of points or by straight line segments, the
computation involved could be extensive.

Mr. S. D. Patil, Automobile Department, Government College of Engineering and Research Avasari 23



Parametric
P=[x(u) y(u) z(u)]" Unin < U < U

Each point on curve is expressed as a function of parameter u. The parameter
acts as a local coordinate for point on curve

Overcomes the limitation of non parametric curve
Closed curve can easily define
Slope is replaced with tangent
Well suite for computation and display
large so, it is difficult to deal with computationally and programme wise
difficult to represent closed curve

If curve displayed by as a series of points or by straight line segments, the
computation involved could be extensive.

Mr. S. D. Patil, Automobile Department, Government College of Engineering and Research Avasari
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Parametric Equation of Line

P=P + (P-P)
P-P=u(P,-P)

P =P +ulP,- P), 0<u<1




P=P]+u PE_PE L I ¥ 1

In scalar form, this equation can be written as

X=X+ U Xy — X,y

B T L R A 0 H 1

y =




The tangent vector of the line 1s given by

P =P,-P, (6.13)
or, tn scalar form,
X = X,— Xy
Y = Va—¥y (6.14)
I =,

The independence of the tangent vector from u reflects the constant slope of the straight line. For
a 2D line, the known infinite (vertical line) and zero (horizontal line) slope conditions can be
generated from Eq. (6.14).

The unit vector in the direction of the line 1s given by

P, -P,
L

n =

(6.15)

where L 1s the length of the line,

L=P,-P|=Jx,-x 2+ yy-y 24 z,-2, (6.16)




Pro.1. A Line joins two Points(3, 4, 6) & (5, 7, 1)
Find

i) The Parametric Equation of Line

ii) The tangent vector of Line

iii) The unit vector in the direction of Line

L Parametric equation of me -
in Fi ritten as,
The parametric equaton of ne P,P, shown Fig, 311, 1s W
f = P1+U(P2'Pl) OSUSI
7 [5-3)
= 4| ) 7-4 0<u<l
6 [1-6
F3 21
P=14]+u 3 <<
bl | -3

o P33 osT gy



—
Tangent vector of line :

4 The tangent vector of the line i1s given by,
Po=P,-P
[5-3
= lijkl | 7-4
1-6
2
= lijk] 3
-5
L
or P = 2i+3j-5k ..Ans.

3 Unit vector in direction of line :
L = |P,~P|

= 'J(XZ—KI)1+(}'}_——}‘1]:+{zz-—1"'.l]2

N5-3Y +(1-4yF+(1-6)

! or L = 6.164

i; The unit vector in the direction of line is given by,

i A (P,-P)

f 1 P; - Pl I

_F

=1 i

| _2i+3)-5k

ﬁ T 6164
| or n = U.324i+0.48{6j ~0811k A

Mr. S. D. Patil, Automobile Department, Government College of Engineering and Research Avasari



Pro.2. Line L1 has end points (3, 2, 7) & (5, 6, 1), while
line L2 has end points (7, 3, 4) & (3, 9, 10)

i) The Parametric Equation of Line

ii) The tangent vector of Line

iii) Are the tow lines are Parallel or Perpendicular?

lv) Are the two lines are intersecting? If yes, find point
of Intersection.

Solution :-

Given: Pi1(3,2,7), P2(56,1), P3(7,3,4) & P4 (3,
9, 10)



Parametric equations of lines ¢

. For line L :

Py = Pyru(p,-p)) D<u=<l
1] 5-1
=12 |+u|l6-2 O<u=l
L7 1-7
1] 4
=12 |+u 4 O<u<l
7 -6
or Po=11271"+u[4 4 -6]T 0<uc<xi
. ForlineLZ:
— O<ve<l
P, = Py+v(P,—P;)
i 3-7
= g+v 9-3 0<vs=il
4 10-4
I -4
= ;’ +v| 6 0<svsl
4 6
=173 4T+v[-4 6 6]T 0<v<1
or P,=17 _

Tangent vectors of lines :
For line L; :

4
=[ij k] 4
-6
D Forlinel,z :
PIZ = P4‘P3
. 3=
= [i.j k1l 93
10-4
. . _4
=[ijk]| 6
6
or P, = —4i+6j+6k

...Ans.
3. Are two lines perpendicular ?

If two lines L; and L, are perpendicular, the dot product of their tangent vectors

should be zero.

PL,-P'LZ = (4i+4j-6k)-(-4i+6j+6k)
= (4x-4)+(4x6)+(-6x6)
= -16+24-36

or PL1°PIJ = =28

As P'u -Pi_z #0, two lines L; and L, are not perpendicular.
4. Are two lines parallel ?

If two lines L) and L, are parallel, the cross product of their tangent vectors should
be zero.

’

ﬁth2=




= (2430) =24 20) 4 (244 16) K

U
or |'“ X |'” =600 4 4ok

U U
As PLyx Pra# 0, the two linos Ly and 1y are not paratlel,

s Avetwo lines intersecting ?

Pii= Pip
From Equations (a) and (b),

o 10 two lines Ly and Ly wro intersocting then at the point of intorsection,

1+4u =
2440 =
and  7-6u =
4utdy =
4u-6v =

6u+bv =

J-4v
T+6v
446V
2
5
3

If two lines L and L, arc intersecting, then Bquations (c), (d) and (¢)

satisfy.
From Equations (c) and (d),
10v = -3
u v =-03
From Equation (c),
4u-4x03 =2
quo=32
' u =08
o  From Equation (c),
LHS. = 6u+6v
= 6x08-6x03

= 4§-18
e
= RHS.

v Honoe, Equaion (¢) satisfies the values obiained from Eq
Therefore two lines L, and Ly are intersecting.

ations () and (d).
wAns,

8 Point of intersection :

. Thc point of intescction can be obtained by substtuing value of either u=0§
i Equaton () or v = - 0.3 in Equaion ()
v From Equation (a),

42
= 52
22

or Pm = (4.2’ 5'2’ 2'2)
..‘Ans.




Parametric Equation of Circle

Representation 1

Non-parametric Representation A y
X2+ y*=1
X = U (a)
. _ 2
y =~1-u ¥

0O 025 05 075 1

Limitations of non parametric representation
epoor and non-uniform definition

esquare root complicated to compute




Representation 2 :
Parametric representation

Y
w2 | 31/8

X = COS U /8
y = sinu {0

Limitations of non parametric representation
ebetter definition than non parametric representation

elnefficient due to computing the trigonometric function at each
point



Representation 3
Parametric Representation with recursive approach

; : : ] i : o A Y I:)n+1
Parametric equation for point P,, with centre of circle is origin 7 T | I
1 \\
X, = rcosd Yn| Pr
Yoo =rsiné dG |
: < b koo X
Now, assuming there is d 8 increment between >
two consecutive P, and P,,,, Xn+1 Xn

Xn 41 = rcos(f + d@)
=rcosfd cosdf@ — rsinfd sindd

= X, cosdf - y,sindé

_ y cosdf + x.sind@ Coordinate of point P,

Observation:
e curves are represented by a series of line-segments

« Trigonometric function cosd @ and sind @ have to calculated once only, hence it speed up the circl
generation and display



Parametric equation for point P, with centre of circle x, and y, origin
= X¢grcos v

= Y.4rsinu
The basic parametric equation of a circle can be written as (refer to Figure 6.11):
X, - X, = rcosuvu s
yn _ yC — r Sin u & u=m/2 Pt Psts ¥aats Zpin)
’JJT {Iﬂ‘ -"-Fl' :JT']
Air — Piv,v.z
=X, trcos(u +d v) & by 2)
=X.,+ rcos vucosd u —rsinusind vu o “ u=0_
P, ¥, 2 w=2m
=y.+trsin(u +d vu)
= y.+trsinuvcosdu —rcosusinduvu ,
/ u = 3m/2
X

L

= X+ (Xx,-x,)cosd v — (y,-Y.) sind vu

= Y.t (yn'yc)COSd u - (Xn'yc) sind v

Mr. S. D. Patil, Automobile Department, Government College of Engineering and Research Avasari



The center ‘P, of a circle is given by,

o]
2, = 31B+h,]

;
R AT
" lxc Ye zcI 13 ) )

The radiug ‘R of circle is given by,

- %\[("z"t)z‘t(yz'-"t)z“(’z""'l)z

0o

\\Mr. S. D. Patil, Automobile Department, Government College of Engineering and Research Avasari
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, 1 1

A cirele hayiy :
point (@. 6, 2). Calcula\e the coordinares of poi?n:e:m i{rnl 3, 4, 2) and passing through the
cle ¥

{
solution : L adklx _J)mml_(yn-é)smml
ntl n

Wite @ Parametric ¢ vation for 4
Wiite @ quation foy T

B e ToR) R Ry, ind A
+(x ~3)sindu A,
By (83 Y00 %,) = P, (7.6,2) . yMI.—“,(yn-J)cosAw(xn J)
' | znoll-’2

L Coordinates of points on circle :

Coordinates of points on circle are given in Table 34.1

Table 34.1
L3
Pnﬂ(xnﬂ'ynﬂ'zm‘l) J'
e T L \ [ v 1
Pn(xn'yn Zn) .\ll \n -‘n zn er‘l yn+l zn+l (xn"'l’yn"'l, n+l)

5 (10, 60, 20)
1.2 I 70 | 60 | 20 | 546 | 773 | 20 |(546,773,20)
0 | 546 | 1m | 20 | 321 | s | 20 |(327,846,20)
T30 | 327 | 846 | 20 | 100 | so0 | 20 |(100,800,20)

(
301 100 | 800 [ 20 | -073 | 646 | 20 (-0.73,646,20)
AV [ =073 ] 646 | 20 | -146 | 427 | 20 (-146,427,20)

; 30 [ -146] 427 | 20 | -100 | 200 | 20 (-1.00,200,20)
4 30 1-100] 200 | 20 | 054 | 027 | 20 (0.54,027,2.0)
30 | 034 1027 | 20 | 2713 | 2046 | 20 (273,-046,20)

Fig. 3.4.1 -

rametric equation : T L2 -0d6] 20 | 500 | 000 | 20 (506, 000,20)
i Fig, 34,1, 0 ] 500 ) 000 | 20 | 6 | 154 | 20 |63, 154,20,
X o = X+ (% - % Joos du=(y, myp)sin A 30 | 67 | 154 | 20 | 746 | 3m | 20 |4 37,20
gy = Yot (Y =yp)oos Aut (-, Jom & 30 | 746 |33 | 20 | 700 | 600 | 20 |(700,600,20)
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Prob.2.  P1(2,3,6) &P2(8,7,6)

Radius of circle :
The radius of aircle is,

!J

R =
\E{ =
Py ¥2. Z2)
or RE -
< s S ircle : Y 38 & te
3. Coordinates of one point on circle :
Xyo- x,tRecosu Z &
PiXy ¥y 2y) 3
» = y_ +Rsinu
D) FESN Yoi St
3 =%
Atu=0;
= X, = 5+72lcos0 =1221]
o
Yo = 3+721sin0=350
r = 6=60
z .
Fig. 3.5.1 S P (X Yo%) = (12221, 5.0, 6.0)
RerEig 351 4. Parametric equation of circle :
Center of circle : Ye1 = %P - X )cos Au—(y, —y,)sin Au
The center of circle 1s. Ty = yc‘*'(yn‘yc)COSAu*-(g\—xc)sinAu
1
= — + P, =
Pc 2[P1f ‘-;l 1 Zy
/ -
- < > +V, Z +Z, E . .
= SR _\_1”‘;—‘-7—‘— SRR S ‘5+(xn—5)cosAu—(yn-5)s;nAu
( o> % 3 2 - il s : o= -
Xea¥eo % ot Yns1 =S5 +(¥,=5)cos Au+(x ~5)sinAu
[2+8 3+7 6%0| i
= L—?_‘ T2 _‘ S
e s 5. 6) S. Coordinates of points on circle :
X Ser et . 3 ]
or (x¢sYe» i The coordinates of points on circle are given in Table 3.5.1.
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Lable 3.5 ¢ —
X
Au n Yn z X,
+ 1 Yna4 z
+1 ( x y
leyrd (] n+1? n+l’zn+l)
W 12.21 5.00 6.0 WT\ (12.21, 5.0, 6.0)
P : O
30 1124 | 8.61 6.0 861 ?6\0 (11.24, 8.61, 6.0y
el . 24
30 8.61 11.24 6.0 TT 6.0 (8.61, 1124, 6.0)
. ? 1
30 500011221 | 60 ol o 510 (5.00, 12221, 6.0)
: 24 z
30 1189 | "11.24 6.0 Bl °:0 (1.39, 11.24, 6.0)
St 61 6.0
30 - 124 | 8.61 6.0 —221 ‘W (=124, 861, 6.0)
: ; 6.0 =
%0 o0 500 i i (=221, 5.00, 6.0)
24 1.39 6.0 (= 1.24, 139, 6.0)
30 |—124| 139 | 60 150 M| S
- - - " 24 6.0 (139, — 124, 6.0)
3 . S K : 5.0 =
: 0 2.21 6.0 (5.00, —2.21, 6.0)
: 5.0 — 2. 6.0
_39 21 861 | -124| 6.0 (8.61, — 124, 6.0)
-_30 SIG TR0 6.0 11.24 1.39 6.0 (11.24, 1.39, 6.0)
30 11.24 1.39 6.0 12.21 5.00 6.0 (1221 500 &M
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Parametric Equation of Ellips

Yy k

X,= X.+ ACOSu
Yo=Y+ Bsinu 0< 6<2r

L, =L,

Now uses the same method as in the Representation of circle to reduce the amount of calculation.

Xn 41 =X, tAcos(u + du)
=X.+ Acos v cosdu — Asinu sindu

Vo =Yy .+Bsin(u +d vu)
= Yy.+Bsin uvucosdu + Bcosu sindvu

Xnat = x.+ (x,-x.)cosd u —‘;17 (Yn-Ye) sindu

Ynaa = Yt (Yn-Yc)cosdu + fl_ (Xn-Y) sindu g
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Parametric Equation of ellips inclined at angale a Vi

X ¥ Acosucosa — B sinusina

= y.+Acosusina + Bsinucosa

Parametric Equation of an inclined Ellips

Xy
Pix.v, )
R
|
I |
|
I |
I I A cos u cosn
I |
I |
Y
=i
| i
] I I
i [} i
I i I
I 1
i I i
I i i
I I I
} I [}
] i i
I
! }-—'-| B sinu sinn

A cos i siney

-

—
-~

¢

0<u<2n
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Parametric Equation of Inclined Ellips

The ellipse of interest can be obtained by rotating the reference ellipse at the origin
by ¢ about the z axis and translating it by X_ in the x direction and by Y in the y di-
rection. If the x, y, and z coordinates of the points on the ellipse of interest are de-
noted x*, ¥, and z* and those of the reference ellipse are denoted x, y, and z, the

following equation will hold:

[x' y 0 I]T =Trans(X_,Y.,0)Rot(z,¢)(x y 0 l)T
=(xcos¢p—ysingp+ X, xsing+ycosg+Y, 01)
x =xcos¢—ysing+X_=acosOcos$—bsinOsing + X,

y =xsin¢+ycos@+Y_=acosOsing+bsinfOcosp+Y,
z7=0 (0<6<2n
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Example 1

An ellipse has major axis of 10 units & minor axis of 8 units. If the
centre of ellipse is (5.6,3) write the parametric equation of an ellipse.
Given: ‘}

A= 1072 = S units B=872 = 4 umitg

PAx.y.2)2(5,63)

2
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1.

Coordinates

Xn

In

Atu=0;

of any point on ellipse :
= X,+Acosu
= y.+Bsinu

Ze

Il

5+5cos0=10

6+4sin0=6

Il
N
|
W

Mr. S. D. Patil, Automobile Department, Government College of
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2.

xn-+-1
Yn+l

Zp 41

Xn+1

yn+1

n+l

Parametric equation of ellipse :

A :
xc+(xn—xc)cosAu—§'(yn—yc)smAu

A :
= yc+(yn—yc)cosAu+'§(xn—xc)smAu

Ze

= 5+(xn—5)cosAu-'i-(yn—6)sinAu

= 6+(yn—6)éosAu_+%(xn-5)sinAu

= 3 : i .ADS.
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The ellipse has its major axis 12 units and minor axis 8 units.
The inclination of major axis with X-axis is 30°. If the center

of ellipse is (10, 5, 4), write its parametric equation.

Solution :
bl .
Given : A=‘l§2’=6units ; B=-2'=4umts
P. (x.,¥.z)=(10,5,4) : o = 30°.
H
o= -
47
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The parametric equation of ellipse, shown in Fig.
can be written as,

ﬁ

X =X,+Acosu-coso—B sinu-sin o

y=y.+Acosu-sino+Bsinu-cos o 0<u<g2n ..a)

-

L ¥ = 1[}+6cc}su-cusB{}é%lsinu-sinSU |

y = 35+6cosu-sin30+4sinu- cos 30 >h0*_111'.=£2'3I...(I3)

7 < 4
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WX =10+519%cosu-2siny

>

Y = 5+3cosu+3.464 sinu

0<ug2n

Mr. S. D. Patil, Automobile Department, Government College of
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Order of a Synthetic Curve

e Mathematically, synthetic curves represent a curve-fitting problem
to construct a smooth curve that passes through given data points.

e Zero-order continuity Co yields a position continuous curve. First
Ci-and second C2-order continuities imply slope and curvature
continuous curves respectively. A Ci curve is the minimum
acceptable curve for engineering design.

e A cubic polynomial is the minimum-order polynomial that can
guarantee the generation of Co, C1 or C2 curves.

e Also, the designer may prefer to control the shape of the curve
ally instead of globally by changing the control points.



Continuity (C° C! & C?)

CY continuity: Two curves sections must have the same
coordinate position at the boundary point. i.e. when two
curves meet at their end points but may not share same
tangency curvature.

Tangents

® Controf point

{1} Zero-order continuity (CY curve)



Clcontinuity: It means that the parametric first derivatives
are the same at the intersection on two successive sections.
l.e. two curves have the same tangent at the matched end
points.

Tangent

Centers of
Curyabunre

(H) First-order continuily (" curve)



C? continuity: Both the first and second parametric
derivatives of the two curve sections are the same at their
boundary. I.e. two curves have the same curvature at the end
point and have a smooth transition from one curve to
another.

Tangent

-

Center of
curvature

(e} Second-order continuity (7 curve)




Synthetic Curve

A curve which are defined by set of data points are known as
synthetic curve

It is used for representation of profile of
* Carbodies

* Ship hulls

* Airplane wings

* Propeller blades

Few types of synthetic curve are
* Hermite Cubic Splines

* BezierCurve

* B-Spline Curve
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Type uf Synthetic Curve Representﬂtmn

Cubic Spline curve: A curve i1s fitted to a set of
data points. The tangents at the start and end point
dictate the shape of the curve.

Bezier Curve: These use approximations to
produce a smooth curve. and do not pass through
all the data points. but are influenced by the
control points. The order of the curve 1is
dependent on the number of control points.

B-spline Curve: These are generalized form of
the Bezier Curves and have the ability b control
the curve shape locally as opposed to global
control. They alo provide the possibility to add
control points without increasing the degree of the
curve. The kinds of B-spline curves can be fined
to a set of data points.




Cubic Spline curve: A curve is fitted to a set of / .'md
data points. The tangents at the start and end point Tangent point

: at stant

dictate the shape of the curve. poi - \

Bezier Curve: These use approximations to Contro
produce a smooth curve, and do not pass through Ralgs \
all the data points, but are influenced by the control ]
points. The order of the curve is dependent on the
number of control points.

MY
B-spline Curve: These are generalizeﬁ‘form of the
Bezier Curves and have the abilg’ﬁy\"\b control the
curve shape locally as opposed to global control.
They alo provide the possibility to add control

o&
points without increasing the degree of the curve.
The kinds of B-spline curves can be fined to a set of
data points.
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Hermit Cubic Splines:

Hermite cubic spline is drawn by using two end points of curve
and the two tangent vectors at these points

Y
A
i
/ P
Py (u = 0)
- — X

IVIl. 9. U. Fdlll, AULUITIUVIIT DTPdILUITITIHIL, GUVCTHTHITITHIL COUNITCET UL LIHZHICCTHINE dllu Ne>Tdi Ll Avaddll
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Hermit Cubic Splines:

Parametric Equation of Hermite cubic spline

3 ¢ 2 ki
x(W) =au+bu+cutd

y(u) = ayu3+byu2+cyu+dy F0<usl

z(u)=azu3+bzu2+czu+dl g
’X(ll)w -axbx cx dx- 2
OI'P(U)=< }’(ll) e ay by Cy d
z) Lz, b ¢

zdkl/
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Hermit Cubic Splines:

*General form of Parametric Equation of Hermite cubic spline in
any of X, Y, Z direction.

Pw = aw +hu +cu+d 0<u<l
)
b
c

(d.
*Tangent Vector at any point P(u):

or P) = [wuru'l]y ¢ O0<usl  ..(2.143)

PP(u) = 3au’+2bu+c

or P(u) = [3u’2010] % U .(2.14.4)

Mr. S. D. Patil, Automobile Department, Government College of Engineering and Research Avasari
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Hermit Cubic Splines:

*Point & Tangent Vector at u=0

a
P, = [0001] lc’ ()
d
d
and P, = [0010]4°"
0o = c -..(b)
d
*Point & Tangent Vector at u=1
a
P,-¥ [1111)] : ()
d
a
’ b
and P, = [3210] i .(d)
d
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Hermit Cubic Splines:

*Boundary conditions for Hermite Cubic Spline Curve:
Combing Eq. (a), (b), (¢) & (d) the boundary conditions for hermite cubic

spline curve in matrix form can be written as,

B 00017 (a)
QUL _frranpinl
- 10010 ¢
P 132 104 Ld)

@ Polynomial CoefTicients for Hermite Cubic Spline Curve :
Solving matrix Equation (2.14.5), the polynomial coefficients

a, b, c and d are given by,

-1
& "0 0 01 ::0
Juk o 11 1 1 !
c - 0010 P,
.5 3210 P!
(a) 2 -2 1 1 f,'o
Jbl 3 B =21 1
s c o2 o 0 1 0 P
L d ) 1 0 0 0 7
1
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Hermit Cubic Splines:

([ 2(Py=P;)+P,+P,
_J -3(P-P))-2P P

P,

. Po J

or

(=" o T

3. General parametric equation for Hermitz cubic spline

curve

From Equation (2.14.3),

a

b
3 2

d

Substituting Equation (2.14.7) in Equation (2.14.8), the
parametric equation for Hermite cubic spline curve can be written

as,
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2. Bezier Curves:

+ Itis not very convenient to change the shape of Hermite cubic splines

curves.
* In order to provide more flexibility for changing the shape of curve.
+ Itis used for car surface design.

P, Control points (vertices)
===~ Characteristic polygon

* The Curve passes through the first & last points while all other data
points act as control points.

Mr. S. D. Patil, Automobile Department, Government College of Engineering and Research Avasari
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2. Bezier Curves:

« Parametric Equation for Bezier Curve:

* The parametric equation for a Bezier curve, with (n+1) data points,
passing through the points Po & Pn can be written as,
n

_ 5
P(u) = Z P§C(n,i)u’(1-u)n-I 0<u<l

i=0
] e

= Y CaiPud=u"

0<u<l :
1=1
P = PAd-w)'+CmDP,ud—u)""’
+Cm2)P,u” (1 —-w"?
F et C@-DP, " @A —-w)
+P_ u’, 0<uxl
n !
Clm,) =

i!'(n—1)!
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2. Bezier Curves:

1
2
3.
4

Characteristics of Bezier Curves:

It does not use tangent vectors for controlling its shape.

The shape of it is controlled by number of data points.

It gives better flexibility in controlling the shape of the curve.

The Bezier curve with (n+1) data points is defined by the polynomial of nt
degree.

The Bezier curve is symmetric with respect to ‘u’ & ‘(1-u)’ means the
sequence of control points can be reversed without changing the shape of
the curve.

Each control point is most influential on the curve shape.

The closed curve can be generated by closing its characteristics polygon i.e.

choosing Po & Pn to be coincident.

The flexibility of it increases with increase in number of control points.
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2. Bezier Curves:

o
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B-Spline Curves

One of the problem associated with the Bezier curve is that, with an
increase in the number of control points, the degree of the
polynomial representing the curve increases.

This makes the parametric equation complicated and increases the
computation. For that B-spline curve is used.

B-Spline curve separates the degree of polynomial representing the
curve from the number of given control points.

They can generate a linear, quadratic or cubic B-spline curve.

B-spline curve are most widely used synthetic curves.
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* B- Spline Curves

£
ES
A
e
.

B-spline curve separate the degree of polynomial representing the
curve from the number of given control points.

While four control points can always generate a cubic Bezier curve,
they can generate a linear, Quadratic or Cubic B-spline Curve.
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* B- Spline Curves

Advantages of B-Spline Curve:

1. B-Spline curves allows local control over the <hape of curve as
against the global control in case of the Bezier curve.

2. In B-spline curve, the degree of polynomial representing the

curve can be set independently of the number of control points.

3. B-spline Curve give better control.

4. B-spline curve permit to add or delete any number of control

points without changing the degree of polynomial.
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NURBS

(Non Uniform Rational B-Splines)

NURBS is a mathematical model commonly used for generating

and representing curves and surfaces in computer graphics.

NURBS provide a single mathematical model
representing analytical shapes and synthetic shapes.
It is superset of all synthetic curves studied so far.

It is defined by the algebraic ratio of two polynmimals.

Mr. S. D. Patil, Automobile Department, Government College of Engineering and Research Avasari
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% The general form of NURBS curve is given by,

k
Zi:l Nl,nwipi
k
Zi=1 N inWi

C(u) =

» Advantages:

= NURBS is the most versatile form of shape.

= NURBS is capable of representing all analytical curves as well as synthetic

Mr. S. D. Patil, Automobile Department, Government College of Engineering and Research Avasari
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NURBS(Non uniform rational B spline curves)

A rational curve is defined by the algebraic ratio of two polynomials
while a non rational curve is defined by one polynomial. Rational curves
draw their theories from projective geometry.

Non-uniform rational basis spline (NURBS) is a mathematical model
commonly used In computer graphics for generating and representing
curves and surfaces. It offers great flexibility and precision for handling
both analytic (surfaces defined by common mathematical formulae) and
modeled shapes.

NURBS are commonly used in computer-aided design (CAD),
manufacturing (CAM), and engineering (CAE) and are part of numerous
Industry wide standards, such as IGES, STEP, ACIS, and PHIGS. NURBS
tools are also found in various 3D modeling and animation software
packages.



NURBS surfaces are functions of two parameters mapping to a surface in three-
dimensional space.

The shape of the surface is determined by control points.

NURBS surfaces can represent, in a compact form, simple geometrical shapes.

A NURBS curve is defined by its order, a set of weighted control points, and a knot
vector.

The knot vector is a sequence of parameter values that determines where and how
the control points affect the NURBS curve. The number of knots is always equal to
the number of control points plus curve degree plus one (i.e. number of control
points plus curve order). The knot vector divides the parametric space in the
intervals mentioned before, usually referred to as knot spans.

The values of the knots control the mapping between the input parameter and the
corresponding NURBS value. For example, if a NURBS describes a path through space
over time, the knots control the time that the function proceeds past the control
points.



SURFACE MODELING

Surface modeling gives you the ability to build out a visual representation of an object’s exterior and its
contours

Surface modeling is a mathematical method usually provided in CAD applications for displaying solid-
appearing objects. Surface modeling makes it possible for users to look at the specific object at specific
angles with solid surfaces.

Surface modeling is a popular technique for architectural designs and renderings.

For Surface model there were no properties of mass defined and no thickness. This gives the designer the
unique ability to modify the model in ways that solid models are incapable.

Also, note that these surfaces can be represented using NURBS or polygons, depending on the application.
SolidWorks typically uses NURBS in its surface modeling operators.

Surface modeling facilitates, Make Changes to an Imported Model, Design More Complex Shapes and

Create a Fillet or Draft Between Faces.



Surface modeling is considered a more complex technique for displaying objects than wireframe modeling.
Surface modeling has much less ambiguous display functionalities compared to wireframe modelling. but not
as much or sophisticated as solid modeling. The technique often involves conversions between various three-
dimensional modeling types.

Typical processes involved in surface modeling are: Generation of a model combining the three-dimensional

surfaces and solids



INTRODUCTION TO SURFACES

Shape design and the representation of complex objects such as car, ship, and airplane
bodies as well as castings cannot be achieved utilizing the curves covered in earlier.

In such cases, surfaces must be utilized to describe objects precisely and accurately. We
create surfaces, and then we use them to cut and trim solid features and primitives to
obtain the models of the complex objects.

Creation usually begins with data points or curves. Surface creation on CAD/CAM
systems usually requires curves as a start.

During surface creation on a CAD/CAM system, you should follow the modeling
guidelines and strategies. Moreover, you should be careful when selecting curves to
create surfaces. Selecting the mismatching ends of curves results in twisted surfaces.
The figure shows how the wrong ruled surface is created if its defining curves are
selected near the wrong ends.



(b Correct selected end points

() Wrong selected end points



A surface might require two boundary curves, All curves covered in this Chapter can be used to
generate surfaces. In order to visualize surfaces on computer screen, a mesh, say in n in size, is usually
displayed. The mesh size is controllable by the user.

fery 4 > 4 mesh size

(f) 20 > 20 mesh size



Types of Surfaces

1. Plane surface: It is the simplest surface. It requires three non-coincident points to define an
infinite plane. The plane surface can be used to generate cross sections by intersecting a solid with
it.

2. Ruled (lofted) surface: It is a linear surface. It interpolates linearly between two boundary curves
that define the surface (rails). Rails can be any curves, this surface is ideal for representing surfaces
that do not have any twists or kinks.

3. Surface of revolution: It is an axisymmetric surface that can model axisymmetric objects. It is
generated by rotating a planar curve in space about the axis of symmetry a certain angle as shown
in Figure.

4. Tabulated cylinder: It is a surface generated by translating a planar curve a certain distance along
a specified direction (axis of the cylinder or directrix) as shown in figure. The plane of the curve is
perpendicular to the directrix. This surface is not literally a cylinder. It is used to generate extruded
surfaces that have identical cross sections.

5. Bezier surface: it is a surface that approximates or interpolates given input data. It is different
from the previous surfaces in that it is a synthetic surface. It extends the Bezier curve to surfaces.
It is a general surface that permits twists, and kinks. Bezier surface allows only global control of the
surface.
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Figure 7.3 Plane surface.

Rail (boundary curve)
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Figure 7.5 Surface of revolution.

Uﬂtimc Erix
—_—

Curve

/_\/'_._

C . —

‘r/_

Figure 7.6 Tabulated surface.



Figure 7.7 Bezier surface.
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Figure 7.8 B-spline surface.



6. B-spline surface: It is a surface that can approximate or interpolate given input data.
Figure shows an interpolating example. It is a synthetic surface. It is a general surface like a
Bezier surface hut with the advantage of permitting local control of the surface.

7. Coon’s surface: The previously described surfaces are used with either open boundaries
or given data points. A Coons patch is used to create a surface using curves that form closed
boundaries .

8. Fillet surface: It is a B-spline surface that blends two surfaces. The two original surfaces
may or may not be trimmed.

9. Offset surface: Existing surfaces can be offset to create new ones identical in shape hut
with different dimensions. It is a useful surface to use to speed up surface creation. For
example, to create a hollow cylinder, the outer or inner cylinder can he created using a
cylinder command and the other one can he created by an offset command. The offset
surface command becomes very efficient to use if the original surface is a composite one.
10. NURB Surface: as stated earlier, surface defined by NURB curves.

11. Coons Surface: A Coons surface or simply Coons, is a type of manifold parameterization
used in computer graphics like CAD/CAM to smoothly join other surfaces together, and in
computational mechanics applications, particularly in finite element method and boundary
element method, to mesh problem domains into elements.



Closed bBourdary

Figure 7.9 Coons surface.
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Figure 7.10 Fillet surface.

Offser direction

Figure 7.11 Offset surface.



Representation of Curve in Cartesian space :
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Figure 7.13 Parametric representation of a surface.
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